neuroScreen

Automated ABR screening in the NICU with zero Re-tests

Yuri Sokolov, Isaac Kurtz, Aaron Steinman, Cameron Mahon, Olena Sokolova Vivosonic Inc., Toronto, Canada EHDI Conference, New Orleans, LA, February 25-26, 2008

Remembering Prof. Poul Madsen (1923-1997)

Collaboration with Poul Madsen, then an Adjunct Professor at the *Institute of Biomedical Engineering*, University of Toronto, in 1996-1997, led to the development of our technologies. November 14th, 2007, marked 10 years since Prof. Madsen passed

We will always remember his enormous contribution to the field of diagnostic Audiology – Madsen Electronics, Clinical Impedance Bridge, and ABR.

away.

Presentation outline

- Year 2007 JCIH Position Statement endorsement of AABR screening in the NICU
- The problem of noises in AABR: Physiological Artifacts and Extraneous noises
- New techniques helping clinicians obtain correct AABR outcomes
- Conclusions
- Questions and answers

The Joint Committee on Infant Hearing (JCIH) released the new, Year 2007 Position Statement: Principles and Guidelines for Early Hearing Detection and Intervention Programs in October 2007

POLICY STATEMENT

Year 2007 Position Statement: Principles and Guidelines for Early Hearing Detection and Intervention Programs

Joint Committee on Infant Hearing

PEDIATRICS Volume 120, Number 4, October 2007

http://aappolicy.aappublications.org/cgi/reprint/pediatrics;120/4/898.pdf

Year 2007 JCIH Position Statement expands the definition of targeted hearing loss to include *neural* hearing loss

Definition of hearing loss expanded from congenital permanent bilateral, unilateral sensory, or permanent conductive hearing loss to include neural hearing loss (e.g. "auditory neuropathy/ dyssynchrony) in infants admitted to the neonatal intensive care unit (NICU).

Year 2007 JCIH Position Statement endorses *separate* protocols for NICU and well-baby nurseries. AABR prevails

- Well-infant Nursery babies can be screened with either OAE or AABR, which will detect HL of 40 dB or greater.
 - If both OAE and AABR are used (two-stage), AABR outcome prevails:
 - » OAE "fail" and AABR "pass" is considered screening "pass"
 - » OAE "pass" and AABR "fail" is considered screening "fail",
- NICU babies admitted for >5 days are to have ABR included in their screening so that neural HL is not missed.
 - Infants who do not pass AABR in NICU are to be referred to an audiologist for rescreening and, when indicated, comprehensive evaluation including ABR.
- For rescreening, screening on both ears is recommended, even if only one ear failed.
- For readmissions in the 1st month of life for all infants (NICU or wellbaby) when there are conditions associated with potential HL, a repeat hearing screening is recommended before discharge.

AABR screening in the NICU is the only technique to detect Neural Hearing Loss, but is often challenging

vivosonic

ABR originates from the Auditory Neural System

Auditory Evoked Potentials (AEPs) Any electrical potential ^o that is produced by the auditory system and that can be recorded *in vivo*, mostly from the scalp.

Auditory Brainstem Response (ABR) Generated by the Auditory Nerve (CN VIII) and ascending auditory pathways of the brainstem.

ABR screening is based on detecting *Wave V* at a set stimulus level, typically 35 dB nHL

- The only method to detect *neural* HL
- Absence of ABR to 30 or 35 dB nHL, 100 µs clicks reveals mild and more severe hearing loss
- Absence of response to 45-50 dB nHL clicks reveals moderate and more severe hearing loss
- Screening parameter: detection of Wave V
- Automated detection of ABR Automated ABR (AABR)
 - Statistical technique based universal – non age-specific
 - Template-based are agespecific, typically 0-2 months of age

Latency, ms

Source: Multiple publications by Jay Hall III, David Stapells, and others.

Any screening outcomes, PASS or REFER, can be true or false, and the *false* ones must be *minimized*

		Hearing		
		NORMAL	LOSS	
Screening outcome	PASS	True Negative - GOOD: - No parent anxiety - NHS purpose fulfilled	False Negative - VERY BAD: - Parents assured - HL detection and intervention delayed - NHS purpose defeated	
	REFER	False Positive - BAD: - Parent anxiety - Unnecessary follow up - Unnecessary NHS system overload & excessive cost	True Positive - GOOD: - HL detected - Timely follow up - NHS purpose fulfilled	

AABR screening is based on automatically detecting ABR signal in noise at a certain stimulus level, typically 35 dB nHL

vivosonic 11

Signal detection depends on the signal, noise, and signal-to-noise ratio – all affected in the NICU

The same signal (S) may or may not be recorded depending on noise (N) and signal-to-noise ratio (SNR)

ABR detection factors:

- Electrical ABR Signal will be reduced by acoustic masking of ambient noise
- Electrical Noise physiological artifacts and environmental interferences
- Residual Signal-to-Noise Ratio (SNR) after averaging:
 - S >> N, SNR >> 0 detection is very easy (low false outcomes)
 - S > N, SNR > 0 possible, but more difficult (many false outcomes)
 - S < N, SNR < 0 impossible (all outcomes may be false)

Physiological artifacts and extraneous contaminate ABR signal

Physiological artifacts

- Brain (EEG)
- Eyes (EOG)
 - Electric dipole movements (ENG) very large
 - Ocular muscles (EMG)
- Skeletal muscles (EMG)
- Heart (very high in infants) (ECG or EKG)
 - Heart is relatively big vs. body size
 - Heart is close to the electrodes
 - Heart rate is 2-3 times higher vs. adults

Extraneous *interferences*

- Electric and magnetic field-induced interferences
 - Electric field-inducted noise (EF)
 - Magnetic field-induced noise (MF)
- Radio-frequency interferences (RF)
- Conducted power-line noise: 50 or 60 Hz and their harmonics

NICU AABR challenge: Acoustic noise (low signal) + EMI (high noise) = low SNR \rightarrow poor detection \rightarrow false outcomes

vivosonic

ABR signal can be be reduced by ambient acoustic noise and/or ear-canal obstructions

Sound Stimulation

Stimulus is masked by acoustic noise – patient generated or externally generated

Sound Stimulation

Stimulus does not reach the ear drum due to obstruction or ear-canal collapse invisible to the screening person

In the NICU, ABR signal is smaller, electrical noise higher, SNR lower – making ABR signal detection more difficult

• Electrical ABR Signal in the NICU is reduced by:

- Acoustic masking with ambient noise
- Acoustic leakage of stimulus through poor seal of the ear couplers
- Ear canal obstruction invisible to the screening person due to the small size of the ear and poor visibility

Electrical Noise is increased by:

- Physiological artifacts from the infant
- Environmental interferences electromagnetic and conducted

In a "Quiet" case, with high SNR, false positives and false negatives are minimal

When acoustic or electrical noise is high, or the ear is obstructed, false positives increase

"Refer" outcomes and targeted Refer rates (4%) force rescreening, which increases the probability of False Negatives

Note: Published sensitivity of AABR screening to bi-lateral HL = 99.96%

NEW AABR TECHNIQUES: Restoring the True outcomes

Start with protecting the ear from ambient ACOUSTIC noise

VIVOSONIC 21

Patent pending

Viewing the magnified and illuminated ear canal reduces the risk of undetected ear-canal obstruction and False Positives

View the magnified ear canal to detect obstructions

Patent pending

In-situ recording and optimized signal processing removes electrical noise, restores SNR – yielding True results

Signal acquisition a	and processing	techniques
----------------------	----------------	------------

<i>In-situ</i> Amplification & Pre-filter	Kalman- Weighted Averaging	Optimized buffering	SNR-adaptive filter
Removes EMI, ECG, EOG, RF	Removes intermittent EMG (occasional movements like heart beat and	Remove continuous EMG (tense muscles continuous movements facial grimace, cry	

US Patents: 6,463,411; 6,778,955; 7,206,625; and 7,286,983, other patents pending.

suckling)

New AABR techniques restore screening outcomes in the NICU to a "Quiet" case

Conclusions: New techniques aim to enable Zero Re-test and make AABR screening effective

- Reduced risk of False positives
 - From Ear Canal Obstruction
 - Novel View-Phone[™] helps preventing ear-canal collapse
 - New Ear Domes[™] protect from ambient noise
 - From Patient-related muscular, ocular, and cardio artifacts
 - Removed by new signal-acquisition and signal-processing techniques
- Reduced risk of False Negatives
 - Single test reduces the risk of False PASS due to chance alone
- Reliable outcomes in the NICU
- Lower screening cost
 - Lower-cost Ear Domes[™]
 - No re-tests saves multiple sets of disposables and tester's time

NeuroScreen, View-Phone, and Ear Dome are trade marks of Vivosonic Inc. Expected in Q2-2008.

Questions?

Thank you

for your interest and

Best wishes from VIVOSONIC

